Conformance and Characterization Solution for Real Time Oscilloscopes

TekExpress 400G-TXE

기준 가격 범위

-

추가 정보:

상세보기:

The new Tektronix real-time instrument based OIF-CEI-56G-VSR/MR/LR, OIF-CEI-112G-VSR, and IEEE: 802.3bs (200GAUI-4 and 400GAUI-8), 802.3cd (CR4, KR4) Transmitter Characterization automation system provides turnkey testing and debug of the industries most common 400G PAM4 electrical interfaces. The silicon designers need to perform the 400G based electrical validation of their silicon; the system designers need to perform the 400G based electrical validation. These tools are brought together in a single 400G-TXE package.

Key Features
  • 400G-TXE offers streamlined and fully automated transmitter characterization of OIF-CEI-56G-VSR/MR/LR, OIF-CEI-112G-VSR, and IEEE: 802.3bs (200GAUI-4 and 400GAUI-8), 802.3cd (CR4, KR4) electrical transmitter specifications.
  • Extends PAM4 software package for in-depth analysis and debug of fully automated conformance test solution.
Applications

  • Validation of OIF-CEI-56G-VSR/MR/LR, OIF-CEI-112G-VSR, and IEEE-802.3bs/cd standards
  • Measurements of electrical transmitter

OIF-CEI-56G-VSR/MR/LR, OIF-CEI-112G-VSR, and IEEE-802.3bs/cd fully automated electrical transmitter real-time oscilloscope measurements

This application package is designed in conjunction with the performance levels offered by a 50 GHz, 70KSX instrument pair. The 400G-TXE loads the required Bessel Thomson roll-off filter with appropriate bandwidth. This is common across all 400G electrical specifications in the industry today. The unique lower noise level of the ATI architecture serves the key signal-to-noise and distortion ratio measurements, which are attained with margin on the 70KSX systems. The 400G-TXE solution is also available on a non-70KSX systems, such as 33 GHz, higher 70KDX, and MSO instruments with an understanding that these are for debug only and not for the specification level conformance validation.

Technology Specification Section and Table reference
OIF-CEI-56G-VSR oif2017.346.03, Sections 16.B, Table 16-10 
oif2017.346.03, Sections 16.3.2, Table 16-1 
oif2017.346.03, Sections 16.3.3, Table 16-4 
OIF-CEI-56G-MR oif2014.245.12, section 17.3, Table 17-2, 17-3 
OIF-CEI-56G-LR oif2014.340.08, section 21.3, Table 21-2, 21-3 
OIF-CEI-112G-VSR oif2017.346.03, Table 23-9, Section 23.B.1.1 
oif2017.346.03, Table 23-1, Section 23.3.2 
oif2017.346.03, Table 23-4, Section 23.3 
200GAUI-4 and 400GAUI-8  IEEE 802.3bs, Draft 3.5, Annex 120D.3.1, Table 120D-1 
IEEE 802.3bs, Draft 3.5, Annex 120D.3.1, Table 120E-1 
IEEE 802.3bs, Draft 3.5, Annex 120E.3.2, Table 120E-3 
50GBASE-CR/100GBASE-CR2/200GBASE-CR4 IEEE802.3cd Draft 3.0 Section 136.9.3, Table 136-11 
50GBASE-KR/100GBASE-KR2/200GBASE-KR4 IEEE802.3cd Draft 3.0 Section 137.9.2 
Modulation Data Rate (GBd) Lanes Throughput (Gbps)
PAM4 18 to 29  1 to N Number of lanes*2*Data Rate

OIF-CEI-56G/112G-VSR fully automated electrical transmitter measurements

Mapping of OIF-CEI-56G/112G-VSR measurements
Parameter Min Max Units
DC Common Mode Output Voltage
TP0a -0.3  2.8  V
TP1a -0.3  2.8  V
TP4 -350  2850  mV
Common Mode Noise
TP0a - 12  mV
TP1a - 17.5  mV
TP4 - 17.5  mV
Diff Peak to Peak Output Voltage Tx Enabled
TP0a 750  - mV
TP1a - 880  mV
TP4 - 900  mV
Transition Time
TP0a 7.5  - ps
TP1a 12.0  - ps
TP4 9.5  - ps
Eye Width (TP1a) 0.2  - UI
Eye Height (TP1a) 32  - mV
Eye Linearity (TP1a) 0.85 (56G) - -
0.9 (112G)
Eye Symmetry Mask Width (TP1a) EW6 - UI
Near End Eye Width (TP4) 0.265 (56G) - UI
0.2 (112G)
Near End Eye Height (TP4) 70 (56G) - mV
37 (112G)
Near End Eye Linearity (TP4) 0.85 (56G) - -
0.9 (112G)
Near End Eye Symmetry Mask Width (TP4) EW6 - UI
Far End Eye Width (TP4) 0.2  - UI
Far End Eye Height (TP4) 30  - mV
Far End Eye Symmetry Mask Width (TP4) EW6 - UI
Signal to Noise And Distortion Ratio (TP0a) 31  - dB
Even Odd Jitter (TP0a) - 0.019  UI
Uncorrelated Bounded High Probability Jitter (TP0a) - 0.05  UIRMS
Uncorrelated Unbounded Gaussian Jitter (TP0a) - 0.01  UI

400G-TXE-Conformance-and-Characterization-Solution-for-Real-Time-Oscilloscopes-Datasheet


OIF-CEI-56G-MR and OIF-CEI-56G-LR fully automated electrical transmitter measurements

Mapping of OIF-CEI-56G-MR and OIF-CEI-56G-LR measurements
Parameter Min Max Units
DC Common Mode Output Voltage 1.9  V
AC Common Mode Output Voltage - 30  mVrms
Diff Peak to Peak Output Voltage Tx Enabled - 1200  mVppd
Single Ended Output Voltage -0.3  1.9  V
Level Separation Mismatch Ratio 0.95  - %
Steady State Voltage 0.4  0.6  V
Linear Fit Pulse Peak 0.80 * T_Vf- V
Signal to Noise And Distortion Ratio 31  - dB
Uncorrelated Bounded High Probability Jitter - 0.118  UIpp
Uncorrelated Unbounded Gaussian Jitter - 0.023  UIrms
Even Odd Jitter - 0.019  UIpp

400G-TXE-Conformance-and-Characterization-Solution-for-Real-Time-Oscilloscopes-Datasheet


IEEE (200GAUI-4 and 400GAUI-8) fully automated electrical transmitter measurements

Mapping of IEEE (200GAUI-4 and 400GAUI-8) measurements
Parameter Min Max Units
DC Common Mode Output Voltage
TP0a 1.9  V
TP1a -0.3  2.8  V
TP4 -350  2850  mV
AC Common Mode Output Voltage
TP0a - 30  mV
TP1a - 17.5  mV
TP4 - 17.5  mV
Diff Peak to Peak Output Voltage Tx Enabled
TP0a - 1200  mV
TP1a - 880  mV
TP4 - 900  mV
Diff Peak to Peak Output Voltage Tx Disabled
TP0a - 30  mV
TP1a - 35  mV
Transition Time
TP1a 10  - ps
TP4 9.5  - ps
Eye Height (TP1a) 32  - mV
Eye Symmetry Mask Width (TP1a) 0.22  - UI
Near End Eye Height (TP4) 70  - mV
Near End Eye Symmetry Mask Width (TP4) 0.265  - UI
Far End Eye Height (TP4) 30  - mV
Far End Eye Symmetry Mask Width (TP4) 0.2  - UI
Far End pre-cursor ISI ratio (TP4) -4.5  2.5  %
Signal to Noise And Distortion Ratio (TP0a) 31.5  - dB
Level separation mismatch ratio RLM 0.95    
Steady state voltage vf 0.4  0.6  V
Linear fit pulse peak 0.76*vf - VV
Post-cursor equalization    
Pre-cursor equalization    
Even Odd Jitter (TP0a) - 0.019  UI
Uncorrelated Bounded High Probability Jitter (TP0a) - 0.05  UIRMS
Uncorrelated Unbounded Gaussian Jitter (TP0a) - 0.01  UI

400G-TXE-Conformance-and-Characterization-Solution-for-Real-Time-Oscilloscopes-Datasheet


IEEE KR4 fully automated electrical transmitter measurements

Mapping of IEEE KR4 measurements
Parameter Min Max Units
Signaling Rate 26.5625-100ppm 26.5625+100ppm GBd
Diff Peak to Peak Output Voltage Tx Disabled - 30  mV
Diff Peak to Peak Output Voltage Tx Enabled - 1200  mV
DC Common Mode Output Voltage - 1.9  V
AC Common Mode RMS Output Voltage - 30  mV
Transmitter steady-state voltage, vf 0.4  0.6  V
Linear Fit Pulse Peak 0.75*Vf - V
Level Separation Mismatch Ratio RLM 0.95  - -
Signal to Noise And Distortion Ratio 32.5  - dB
SNRISI 43  - dB
Transmitter output waveform
abs step size for c(–1), c(0), and c(1) 0.005  0.05  -
abs step size for c(–2) 0.005  0.025  -
value at minimum state for c(–1) and c(1) - -0.25  -
value at maximum state for c(–2) 0.1  - -
Output Jitter
JRMS - 0.023  UI
J4u - 0.118  UI
Even Odd Jitter - 0.019  UI

400G-TXE-Conformance-and-Characterization-Solution-for-Real-Time-Oscilloscopes-Datasheet


IEEE CR4 fully automated electrical transmitter measurements

Mapping of IEEE CR4 measurements
Parameter Min Max Units
Signaling Rate 26.5625-100ppm 26.5625+100ppm GBd
Diff Peak to Peak Output Voltage Tx Disabled - 30  mV
Diff Peak to Peak Output Voltage Tx Enabled - 1200  mV
DC Common Mode Output Voltage - 1.9  V
AC Common Mode RMS Output Voltage - 30  mV
Transmitter steady-state voltage, vf 0.34  0.6  V
Linear Fit Pulse Peak 0.49*Vf - V
Level Separation Mismatch Ratio RLM 0.95  - -
Signal to Noise And Distortion Ratio 33.3  - dB
SNRISI 36.8  - dB
Transmitter output waveform
abs step size for c(–1), c(0), and c(1) 0.005  0.05  -
abs step size for c(–2) 0.005  0.025  -
value at minimum state for c(–1) and c(1) - -0.25  -
value at maximum state for c(–2) 0.1  - -
Output Jitter
Even Odd Jitter - 0.019  UI
JRMS - 0.023  UI
J4 - 0.118  UI

400G-TXE-Conformance-and-Characterization-Solution-for-Real-Time-Oscilloscopes-Datasheet


Electrical system interconnect setup

Direct electrical connections via a precision fixture or 2.92 mm interconnects are the preferred method to access the backplane and cabled signals. The QSFP28 module interconnect point found on the 400G-TXE design is the most typical signal access point.

400G-TXE-Conformance-and-Characterization-Solution-for-Real-Time-Oscilloscopes-Datasheet

Refer to the Wilder Technologieswww.wilder-tech.comfor details regarding the various methods of signal break-out.

User-defined mode

In user-defined mode, users can configure Global parameters, test specific parameters, measurement repeat parameters, and notification parameters. This supports characterization of measurements rather than developing custom lab setups, reducing the testing time and complexity.

De-embedding filters help in compensating for any loss that happens due to cables/accessories present between specification mentioned test point to analog channel of oscilloscope. SDLA can be used for creating de-embedding filter files.


400G-TXE-Conformance-and-Characterization-Solution-for-Real-Time-Oscilloscopes-Datasheet


Reports and measurements results


400G-TXE-Conformance-and-Characterization-Solution-for-Real-Time-Oscilloscopes-Datasheet



400G-TXE-Conformance-and-Characterization-Solution-for-Real-Time-Oscilloscopes-Datasheet


Ordering information

Models
400G-TXE permanent node locked license ordered with a DPS70000SX or DPO70000SX Series Real Time Oscilloscope

DPO73304SX, DPS73308SX, DPO75002SX, DPS75004SX, DPO77002SX, DPS77004SX, DPO75902SX, DPS75904SX

Option 400G-TXE

400G-TXE permanent node locked license ordered with a DPO73304DX or MSO73304DX Real Time Oscilloscope

DPO73304DX, MSO73304DX

Option 400G-TXE

400G-TXE Floating License for use on any Real Time Oscilloscope listed above
DPOFL-400G-TXE
400G-TXE Free 30 Day Trial License for use on any Real Time Oscilloscope listed above
DPOFT-400G-TXE
Prerequisites

The following oscilloscope optional software is required:

PAM4 license
Electrical Transmitter Analysis (version 10.5 or greater)
DJA license

Jitter and Eye Analysis Tools - Advanced (DPOJET)

DJAN license

DPOJET Noise, Jitter and Eye Analysis Tools

SDLA64 license

Serial Data Link Analysis

Tektronix Asset Management System (AMS)

Optional software requires the purchase of a license before they are functional. Some software may require additional software licenses. Licenses are managed within the Tektronix Asset Management System (Tek AMS). The Tek AMS web site address is www.tektronix.com/products/product-license. Product license management requires a login account.

  • Node Locked Licenses provide your own copy of the application on your instrument or personal computer and are permanently assigned to a specific Hosti ID or product model/serial number.

  • Floating licenses can be moved between different Host IDs or product models.

Use the Tektronix Asset Management system to check in and check out floating licenses.

Last Modified: 2019-05-21 05:00:00
다운로드
다운로드

매뉴얼, 데이터 시트, 소프트웨어 등을 다운로드할 수 있습니다.

Go to top